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The Orientation of the Electric-field-gradient Tensor from Single-crystal 
Mossbauer Measurements 

By Terence C. Gibb, Department of Inorganic and Structural Chemistry, The University, Leeds LS2 9JT 

The problem of determining the orientation of the electric-field-gradient tensor from Mossbauer single-crystal data 
is discussed generally in terms of the point symmetries of the resonant site and the space group. The effects of 
finite thickness, polarization, and anisotropy in the recoilless fraction are a l l  taken into account. In many important 
cases it is possible to determine the relevant parameters from only one crystal by using a combination of polarized 
and unpolarized radiation, and several examples are discussed in detail. 

THE electric-field-gradient (e.f.g.) tensor a t  a nucleus can tensor relative to the crystal axes can be fully specified 
be studied by Mossbauer spectroscopy, and provides use- by five parameters, but a t  least three of these can not be 
ful information concerning the asynimetry of the chemical obtained from the Mossbauer spectrum of an isotropic 
envir0nrnent.l The magnitude and orientation of the powder, A classic paper by Zory presented a method 

man and Hall, London, 1976. 
T. C. Gibb, ‘ I’rinciplcs of hIossbauer Spcctroscopy,’ Chap- 

P. Zory, Ph~is .  Rrv. ,  1965, 140, A1401. 
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for determining all the tensor parameters from the an- 
gular dependence of the Mossbauer spectrum in a single 
crystal, and illustrated the approach with data for 
FeC12*4H20. This work has been used as the basis for 
several subsequent papers on other compounds (e.g, 
Fe[NH4]~[S04],-6H20 and Fe[S0,]*7H20 by Chandra 
and Puri 3). However, to simplify the analysis of the 
data it is usually assumed that the mean-square dis 
placement tensor and hence the recoilless fraction are iso- 
tropic, and that the crystals are ‘ thin ’ so that there is 
no saturation of the absorption intensity. The first 
assumption can introduce major errors when there are 
two or more non-equivalent orientations of the resonant 
site. The neglect of saturation is perhaps more serious, 
but it was not realized until much later that the neces- 
sary correction involved the polarization of the absorp- 
tion cross-section. I have also pointed out that the 
work by Zory implicitly assumed that one of the minor 
axes of the e.f.g. tensor lies along the crystallographic c 
axis. There is no such restriction under the P 2 J c  space 
group, and the orientation of the tensor was redeter- 
mined5 using a combination of polarized, and un- 
polarized, source experiments with full thickness correc- 
tions of the data. 

A recent re-examination of the Zory method by 
Zimmermann has shown that for the P 2 J c  space group 
the angular dependence of the single-crystal spectrum 
cannot provide a unique solution, but with additional 
data from applied-field experiments he was able to derive 
a solution in agreement with the polarized-source work. 
Zory did not consider the question of uniqueness, and 
Zimmermann has only analysed the specific case of 
monoclinic symmetry. Polarized-source measurements 
in this laboratory on several compounds have been 
analysed numerically by a tedious trial and error 
a p p r ~ a c l i , ~ ~  7-9 

In this paper I seek to establish guidelines for the 
determination of the e.f.g. tensor in a crystal of arbitrary 
space group where all the sites are crystallographically 
equivalent and the nuclear transition involves the spin 
states I = $ and 3. Major emphasis is placed on the 
low-symmetry space groups, and some examples are 
discussed in detail. 

RESULTS AND DISCUSSION 

T h e  Electric-field gradient and Intensity Tensors.-- 
The electric-field gradient at the Mossbauer nucleus is a 
traceless symmetric tensor of the second rank with nine 
values Vij ( i , j  = $, q, Y )  in a Cartesian-axis system 
9,  q, r. A principal-axis system x ,  y, x can be defined such 
that the tensor is diagonal with lVzzl >, lVyvl 2 lVZz1, 
and can then be completely specified by five parameters, - 
Vtz, the asymmetry parameter q = (Vzz - V,,)/V,,, 
and three angles a,  p, and y to define the orientation of 
NN, y ,  x with respect to fi, q, r .  The tensor is invariant 

K. Chandra and S. P. Puri, Phys. Rev., 1968, 169, 272. 
R. M. Housley, U. Gonszr, and R. W. Grant, .Phys. Rev. 

T. C.  Gibb, Chew. Phys., 1975, 7, 4-49. 
Letters, 1968, 20, 1279. 

with respect to rotation by x about a major axis so that 
the solution for cc,p,y can be restricted to the range 0--x. 

The observed quadrupole splitting A for 2 ++$ 
Mossbauer transition is given by (1) where eQ is the 

A = + eQVzz (1 + +q2)* (1) 
nuclear quadrupole moment. The spectrum comprises 
a symmetrical doublet provided that the absorber is an 
isotropic powder. If the absorber is a single crystal (i.e. 
is polarized) the two lines have different intensities which 
are dependent on the orientation of the tensor with 
respect to the direction of observation. 

The most convenient parameters to record are the 
absorption areas of the lines a t  high and low Doppler 
velocity, Ih and I’ respectively. Zimmermann has 
recently shown that the intensity for an infinitely thin 
absorber with one absorbing nucleus per unit cell can be 
represented by (2) where I = I h  + 11, Ihlj are the 

Ih/I = 2 I’l, eiej ( i , j  = fi, q, T )  (2) 
i , j  

components of an intensity tensor in the j5, q, Y co- 
ordinate system, and ep = sin 0 cos a, e, = sin 0 sin a, and 
er = cos 0 are the direction cosines of the direction of 
observation relative to 9,  q, Y .  The trace is given by (3), 

and it is convenient to define a traceless intensity tensor 
by (4) which is now diagonal in the same principal-axis 

(4) 
system as the e.f.g. tensor. Furthermore, the asym- 
metry parameter is given by (5)  and there is a useful 

sign (V,,) = sign (I,,) (6) 

16[1,,2 -t- 6 ( I ,  - IqqI2 + 
$ ( I p :  + Ip? + I*?)] IA == 1 (7) 

relation (7). If the traceless intensity tensor I ,  can be 
determined, numerical diagonalization can be used to 
obtain -q and hence V,, from the eigenvalues, and oc,p,y 
from the direction cosines, D,. (CL  is an anticlockwise 
rotation about Y ,  followed by an anticlockwise rotation 
p about the new q axis, and finally an anticlockwise 
rotation y about the new r axis.) The signs for Dij are 
chosen so that the determinant is positive, and relations 
(8)-(10) are applicable. 

p = arccos (DTT) (8) 

cc = arccos (D,/sin p) (9) 

y = arccos (-D,,/sin p) (10) 

If there are N sites in the unit cell which are crystallo- 
graphically equivalent but differ in orientation then an 

R. Zimmermann, Nuclear Instr. Methods, 1975, 128, 637. 
T. C. Gibb, J .  Phys. (C), 19‘75, 8, 229. 
T. C. Gibb, Chew. Phys. Letters, 1975, 30, 137. 
T. C. Gibb, J.C.S.  Dalton, 1976, 1237. 
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averaged macroscopic intensity tensor can be defined by 
(11) where I", is the value at  the nth site. The tensors 

unpolarized, and P = 1 corresponds to complete polariz- 
ation. When x = 0 the radiation is linearly polarized 

at  the different sites are related by the crystal symmetry. 
However, the macroscopic intensity tensor IM+ which has 
the symmetry of the space group rather than that of the 
resonant site, does not necessarily contain sufficient in- 
formation to fully determine the individual site tensor 
Int+ The quantity I"A can be defined, equivalent to I A  
of equation (7) except that P A  # 1. Furthermore, 
equation (1 1) implicitly assumes that all the sites have the 
same recoilless fraction in the direction of observation, 
and this is also not necessarily true. One major problem 
is that no single-crystal absorber is truly thin, and in 
practice IMjj cannot be determined accurately without 
considering corrections for absorber thickness and polar- 
ization. Nevertheless the symmetry properties of the 
intensity tensor are very useful. 

Mean-square Dis$lacement Tensor.-The recoilless 
fraction in a direction w is related to the mean-square 
displacement of the nucleus (w2) by (12) where k = 

f = exp( - k2(w2>) (12) 
2 x / ~  is the wavevector of the y-ray. (w2) can also be 
represented in terms of a symmetric mean-square dis- 
placement tensor by (13). This is similar to equation (2) 

<w'> = 2 (ij) eiej ( i , j  = 9, 4, r )  (1  3) 
i .  i 

except that there is no restriction on the trace of the 
tensor which is therefore fully specified by six parameters. 
The principal-axis system is not necessarily identical with 
that of the e.f.g. and intensity tensors. When there is 
more than one orientation of an equivalent site then (w2) 
will in general differ a t  each site except in particular 
directions determined by the crystal symmetry. Ex- 
amples of this are considered in due course. 

Polarized A bsorfition in a Thick A bsorber.-The 
intensity tensor refers specifically to an infinitely thin 
absorber with unpolarized incident radiation. A more 
exact approach is to consider absorption in a thick 
absorber, and additional information can be obtained by 
using polarized incident radiation. The necessary 
equations will now be developed. 

The expression of the absorption intensity as a function 
of source polarization and absorber thickness can be 
derived from a more general result by Blume and Kist- 
ner.10 The incident radiation can be represented by a 
2 x 2 density matrix, p, which is a linear combination of 
the unit matrix and the Pauli matrices, D. P is a vector 

p = *(I  + P . 0) (14) 
in Poincar6 space representing the polarization with 
the three parameters P, = Pcos2xcos2$, P, = Pcos 
2xsin2+, and P, = Psin2x. If P = 0 the radiation is 

10 M. Blume and 0. C. Kistner, Phys. Rev., 1968, 171, 417. 

x e.g. along the s axis if $ = 0, t axis if + = -, and at 45" 

to the s axis if t,b = , and when x = - the radiation is 

circularly polarized. 
The refractive index of the absorber a t  a distance w 

along the direction of propagation can also be written as 
a 2 x 2 matrix with elements nst, etc., and thus equation 
(15) is obtained together with (16)-(19) and k = 2x/h is 

2 
x : ) 4 

nkw = a + b . Q = a + blu, + b , ~ ~  + b303 (15) 

where a = 4 kw (nss + att) (16) 
b, = fr kw (nss - nYt)  (17) 

b, = 8 kw ( n s t  + n t s )  (18) 

b, = 4 kw (nst - nt,) (19) 
the wavevector of the y-ray. The intensity of the 
radiation at w is given by (20) where b = (bI2  + b,2 + 
I ( w )  = exp[i(a - a*)][cos b* cos b + 

(6 * . 6) sin b* sin b 
-i(b* . P) sin b* cos b + i(b . P )  sin b cos b* 
+iP . (6*~rb) sin b* sin b] (20) 

b2)t  and 8 = b / b .  This is the general result derived by 
Blume and Kistner. 

This unwieldy expression can be simplified under two 
specific conditions. First, if time-reversal invariance 
holds then PZ is a symmetric matrix and n,Tt = nt, so that 
b, = 0. Secondly, if the matrix is diagonal, i.e. nst = 
nt, = 0, then b, = 0. It is shown later that in the 
present context this condition can always be realized by 
a similarity transformation corresponding to a rotation 
of the s and t axes by an angle E. The incident polariz- 
ation is now effectively P, = Pcos2xcos2($ + E), 
etc. The refractive index n has imaginary (absorption) 
and real (dispersion) components ; designating the 
imaginary diagonal values in the rotated st co-ordinate 
system as ns; and nJ,  equation (20) can now be evalu- 
ated as in (21). 

I (w)  = +[1 + P cos2x cos2($ + E)] exp (-2 kw nsi) 
+$[1 - P cos2x cos2($ + E)] exp(-2 kwnJ) (21) 

For a quadrupole splitting produced by an arbitrary 
number j of crystallographically equivalent sites it has 
been shown'l that dispersion has no effect on absorp- 
tion, i.e. we need only consider the imaginary coin- 
ponents of the refractive index. These are given by (22) 

where there are n sites of type j per unit area in equiva- 
lent orientation with a recoilless fraction of fj, D" is the 
resonant.cross-section, a is the isotopic abundance for the 

l1 R. W. Grant, H. Wiedersich, R. M. Housley, G. P. Espinosa, 
and J. 0. Artman, Phys. Rev., 1971, B3, 678. 
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746 J.C.S. Dalton 
Mossbauer nuclide, x is related to the energy E and the 
width of the Mossbauer line by x = 2E/r ,  and the 
kth absorption line occurs at energy xjk, The absorber 
density matrix p is normalized such that 2 pJk = 2 p t t j k  

= 1 and 2 p s t j k  = 2 pJk = 0. If all the sites have the 

same recoilless fraction f, and p is diagonal then we obtain 
(23) and (24) where C A  = anfn, is the effective absorption 
cross-section and is dimensionless. 

k k 

k k 

2k~n.y,' = 2 pSs"CA4/[(x - ~ k ) ~  + 11 (23) 
k 

2kwntli = 2 pttkCA/[(x - x X . ) ~  + 11 (24) 
k 

The absorption a t  a Doppler shifty = 2E,v/cr relative 
to a Lorentzian-source emission line is given by (26) 

co 

where fs is the source recoilless fraction and 1 - K is the 
fraction of ' background ' radiation present. The area of 
the spectrum, S ,  is given by (27). 

a, 

.(y) = * (&/x)  ([I + P cos2x cos2(+ + 4- 
--a, 

[ l  - exp(-2kwnS,')] + [ l  - P cos2x cos2($ + E)]- 

(27) 

In  the event that  the k lines in the spectrum do not 
overlap the individual terms in the exponential can be 
separated so that the absorption maxima are given by (28) 

E ( 0 ) k  = &:fs([l + P cos2x cos2($ + E)]R(PSskCA) (28) 

+[I - p cos2x cos2($ + E)1R(PttX-CL4)} 

where R(x)  = 1 - exp(-x/2)Jo(ix/2) (29) 
and Jo(x)  is a zero-order Bessel function of imaginary 
argument. Similarly, the area of the absorption line is 
given by (30) and J l ( x )  is a first-order Bessel function 
with imaginary argument. 

sil. = iKfsx([l + P cOs2x c0S2($ + E)]K(p,/C,y) 

+I1 - p cos2x c0s 2($ + E)]K(PttkCA)} (30) 

where K(x)  = x exp( -x/2) [J0(ix/2) + Jl(ix/2)] (31) 
If the source radiation is unpolarized ( P  = 0) then we 

obtain (32) which is the result used previou~ly.~? ' 7 1 2  

Sk = .fsx[*K(ps,?Cs) + +K(ptt"*)l (32) 
SkS = KfS"K(P,SSh.CB) (33) 

If the source is linearly polarized alor,g s ( P  = 1, $ + E = 
0) then equation (33) is applicable, and if linearly 

polarized along t P = 1, d -+ E = ") - then (34) is 

obtained, which are the results applied intuitively in the 
( 2 

l2 T. C. Gibb, J. Phys. (C), 1974, 7, 1001. 

earlier work.' The more general equation (26) derived 
here is useful in that it expresses the absorption as a 

S k t  = K f S X K ( P l t k C * )  (34) 
function of an arbitrary source polarization. Further- 
more, in instances where the resonant lines are not 
completely resolved i t  can be incorporated into a 
' transmission-integral ' calculation to fully correct for 
both saturation and polarization. 

The Absorber Density Matrix.-The absorber density 
matrix for a $,+ transition with a quadrupole interac- 
tion has been derived e1~ewhere.l~ I t  can be re- 
expressed in amore general form in terms of the asym- 
metry parameter r )  and the Euler transformation D (4,  8, 
6) relating the observation Cartesian-co-ordinate system 
s,  t ,  w to that  for the e.f.g. x, y ,  x as (35)-(37) (N.B.  in 

pSS = 8 &- $o,(a cos26 + b sinZ$ + qc sin 26) 

pt t  = $ & &(a sin26 + b cos26 - yc sin 26) 

pst = p f s  = &&[$(a - b) sin 26 - yc cos 281 

(35) 

(36) 

(37) 
where 

a = 1 -+ r )  cos2+ 

b = 1 - 3 sin28 - y cos2B cos 24 

c = cos0 sin 24 

w = (1 + $y2)-' 

(38) 

(39) 

(40) 

(41) 

ref. 13 the value 6 = 0 was implicit). The upper sign 
refers to the &$-+&: ( x )  transition and the lower sign 
to the -J-$-+-J-$ (n) transition (which are of course only 
pure states for y = 0). 

It is to be noted that the density matrix is always real, 
so that the resonance lines can only be linearly polarized, 
there being no elliptical component in any direction. If 
p is calculated in an arbitrary co-ordinate system s ,  t ,  w, 
then a similarity transformation exists corresponding to 
a rotation by (42) to a new co-ordinate system s', t ' ,  w in 

E = H arctan [ - - 2 ~ ~ ~ / ( p , , ~  - p t L ) ]  (42) 
which p is diagonal. This result was used earlier in tlie 
evaluation of equation (21) which is thus general for the 
quadrupole interaction. If there are j sites which are 
crystallographically equivalent, but differ in orientation 
with respect to tlie observation axes, then the sums 
ps/ = 2 pJk,  etc. can be evaluated provided that all the 

elements are transformed to a common basis system by 
the appropriate similarity transformations. However, 
if the recoilless fraction is not isotropic, then the sum- 
mation has to be written in tlie more general form 
pS/CAL = anq,  zhpssjk, etc. I t  has been shown l3 that 

the symmetry properties of the crystal can be used to 
define directions in which p will be diagonal, and I now 
extend this to a discussion of the crystallographic space 
groups, 

l3 I<. M. Houslcy, R. W. Grant, and U. Gonscr, Phys. Rev., 
1969, 178, 514. 

k 

j 
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Influence of Site Symmetry and Space Group.--The 
e.f .g., intensity, and mean-square displacement tensors 
depend on both the point group of the resonant site and 
the space group of the crystal. However, the number of 
combinations of these which are distinguishable is con- 
veniently small. In  considering all the resonant sites in 
the crystal it can be seen that any two sites related by a 
simple translation, or by an inversion operation followed 
by a translation, have the identical symmetric second- 
rank tensor properties (Vij, Iij, and (ij) are invariant) 
and are therefore entirely equivalent. I t  is therefore 
only tlie point symmetry of the space group which con- 
cerns us. Furthermore, two site orientations related by 
a mirror plane for example can also be considered as 

747 

Only the sign of VZz: remains to be determined. The 
intensity as a function of the angle 0 between the dircc- 
tion of observation and the principal axis x is given by (43) 

(43) 
where the upper (lower) sign refers to ii positive (nc.ga-- 
tive) sign of eQV,,. The observed intensity ratio in only 
one orientation of a single crystal (with 0 +g 54.7 or 
8 > 54.7") provides a unique solution €or the sign of VrZ. 
An accurate measurement of the intensity ratio j, not 
essential, and thickness correction of the data is not 
required. Examples of compounds where tliis procctlure 
has been applied l47I5 include [Fe,(CO),] and [Co(NH3)J- 
[ W C N )  ti1 + 

The minimum number of resonant sites to be considered for each point symmetry 
Cubic Hexagonal Trigonal Tetragonal 

Spacc-group r ~ -  7 /--- r--- ~ r-.-~--.-.-, Orthorhombic Monoclinic Triclinic 
m3m m3 6/mmm 61; 3jm 3 4/mmm 4/m mmm 2 / W %  1 
(0,) ( T h )  P O h )  (C6-h) (D3d)  (C3J P 4 h )  ( C 4 h )  ( D 2 h )  (G,d (G2i) 

i 24 12 12 6 6 3  3 4 4 2 1 
21m 
mmm 

4/mmm 
3 4 4  1 1 1 1  
Slm 4 1 1 
6lm 
6lmmm 
m3 1 1  
m3m 1 
a The sitcs indicated do not nccessarily exist in all the space groups of that symmetry. 

12 6 66 3 3 46 2 2 1 
6 3  3 2 1 
3 IL P 
3 I 41m 

1 1 
1 

The t.c.io-fold axis may be parailc! or 
perpendicular to  the 1% fold axis. 

being related by an inversion followed by a two-fold 
rotation. Thus the point groups 2(C2), wz(C,), and 
2/m(Cz,) can be treated collectively as the Laue group 
2/m(Czh). In this way the 32 point groups can be re- 
duced to  the 11 Laue-symmetry groups. The point 
symmetry of tlie resonant site may be lower than that of 
the space group, resulting in there being more than one 
distinct Orientation of that site in the unit cell. In  some 
instances the tensor properties remain invariant. The 
Table shows the 11 Laue-symmetry groups together with 
the number of resonant sites which have to be considered 
in each case. Both the International and Schonflies 
symbols are given. 

Those cases where only one site has to be considered 
will. be examined first, followed by the more complicated 
example? with multiple sites. 

One efccti.de site orientatiopz. When the orientation of 
the resonant site is efiectively unique, then only five 
distinct cases can arise 

(1) Cu3ic symnzetry. If the hue-symmetry group is 
m3nz or ~ 4 3 ,  i.c. Tor ali the cubic space groups, the e.f.g. 
and intensity tensors vanish (V ,  r= I, = 0) and there is 
no quadruple  splitting. 

(2) Axial synznzetvy. If the point group has hexagonal, 
trigcnal, or tetragonal symmetry the direction of z is 
along the six, three, cIr four-fcld symmetry axis, V,, = v :I7,,, and the asymmetry parameter r) = 0. 

S N .  ( A ) ,  1968. 890. 

?/11 

l4 'I. C. Gibl), R. C-rraticx, and X. N. Greenwood, J Chem. 

(3) O~thorhomhic symnzefry. Tlic Lslii-cc t ~ r ~ ~ ~ ~ ~ : - ~ i ~ ~ ~ ~ i ~ ~ ~ ~  

symmetry groups 222 (D,), mm2 (C2(.), aiid ? I Z ~ ? L  (&,) 
have the three principal axcs dctincd as thc  crystallo- 
graphic axes but in an unknown order, ant1 tlic prohlcni 
is to detcrminc the sign of Vzz,  the niagnitucie of q ,  arid 
the correct choice of axes. If the principal axes arc 
chosen arbitrarily to be the Cartesian set $ , y , ~  then tlie 
intensity tensor is alieady in diagonal form and thc 
observcd intensity can be expressed in terms of polar 
angles 0 and as (44). Because of the trace condition 

Pvp sinz@ C O S ~ @  +P,, sin2@ sin2@ + IllT1. cos20 

[equation ( 3 ) ] ,  i t  is only necessary to determincl Illif 

accurately in two different directioiis jconveniently by 
rotating the same crystal) to obtain values for P,,, J1lll,,, 
and Prr. The traceless values (I,,,, ctc . )  now indicate tlie 
correct choice of principal axes to obtain 0 s: r)  < 1. 
However, to obtain an accurate value for T, it is essential 
to refine the data by carrying out a proper thickness 
correcticn using tlie density-matrix equations. Of 
particular note is that  tlie mean-sqmre c1:splacemcnt 
( w 2 )  will be dependent on direction. 

An alternative procedure is to determine thc arm ratio 
in only one arbitrary direction of observation 70 using 
both unpolarized and linearly polarized radiation ( f ro i i  1 

tor exaniple a source of 5 7 C ~  in iron metal niagnctized 
normal to w so that P = 1 and x = 0). The appropriate 

i". C. Gibb, -1.C.S. Dalton, 1977, 1910. 

P/l = 

(44) 
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748 J.C.S. Dalton 
density matrix for an s, t ,  w axis system defined by a, 0,  
A = 0 so that s and t correspond to the directions of linear 

polarization in the source $ = 0, - can be calculated 

from equations (35)-(37) as a function of 7. The co- 
ordinate system can then be rotated by an angle E 

[equation (42)] to give the diagonal values (pbS)’ and 
( p t t ) ’ .  The area ratio with the unpolarized source follows 
directly from equation (32) and is given by (45). The 

( 3 

area ratio for linear polarization along s is obtained from 
equation (30) and is given by (46), and for linear polariz- 

1, = 

1 2  = 

ation along t by (47). For maximum sensitivity one 
requires that E be small, and the initial experiment may 
show a better choice of polarization axes. The method 
requires that the recoilless fraction be known in only one 
direction, but the numerical refinement of the data to 
obtain -q is more complex so that this advantage is largely 
negated in the orthorhombic case. However, the 
principles involved become more useful for lower sym- 
metries where more directions of observation are other- 
wise required. 

In the point groups 2 (C2), 
m (C,), and 2/m (C2h) only one principal axis of the e.f.g. is 
constrained to lie along a two-fold axis (or normal to a 
mirror plane which is equivalent in effect). There are 
therefore three parameters to determine, the sign of VZz, 
the magnitude of q, and the angle of rotation a of the 
principal axis system in the plane normal to the two-fold 
axis. If the latter is defined as being the Y axis of a 
p ,  q, Y axis system based on the crystal axes then Ih,, = 
Illpp are now finite and we obtain (48). Using the trace 

P / I  = Ih,, sin2@ cos2@ + 2P,, sin2@ cosa sin@ 
-t Illyp sin2@ sin2@ + Ih, cosz@ 

condition, measurements of Ih/I for three orientations 
can determine all the values of the intensity tensor, 
diagonalization of which then gives a,  q, and the sign of 
Vzz. Once again a proper thickness correction is essen- 
tial. 

Alternatively, the polarized measurements described 
for orthorhombic symmetry can be used except that 
is replaced by CD - a. 

(5) Triclinic symmetry. The triclinic point groups 
1 (C,) and T (C,) place no restrictions on the orientation of 
the e.f.g. tensor and the five parameters include the 
three Euler angles a ,  p, and y. This represents the least 
favourable situation. All the nine values of the intensity 
tensor are finite and five measurements of Ih/I with 

(4) L1/170n,ocZinic symmetry. 

(48) 

thickness corrections is the minimum number required 
to specify the e.f.g. tensor. The directions of observ- 
ation can be chosen once the crystal habit is known. If 
only one crystal plane is obtainable, the combination of 
polarized and unpolarized measurements in say two 
directions will probably provide a unique solution, but 
each case will require individual treatment following the 
principles already outlined. 

Multi$le site orientations. When the point symmetry 
of the resonant site is lower than that of the space group 
then the macroscopic intensity tensor has the symmetry 
of the latter (assuming that the recoilless fraction is 
isotropic). In a few instances where both symmetries 
are axial, e.g. 4/m and 4/mmm (see Table), there is no 
effect on the e.f.g. and intensity tensors; only one site 
has to be considered, and the previous arguments can 
still be applied. For symmetries lower than axial, the 
inclusion of more than one site orientation results in the 
macroscopic intensity tensor containing insufficient 
information to specify the orientation of the e.f.g. tensor, 
and I shall now show how these limitations affect specific 
cases. 

(1) TricZinic sites in monoclinic space grot@. The 
simplest case to consider is a monoclinic space group, the 
two distinct triclinic sites therein being effectively re- 
lated in orientation by a two-fold axis (as already shown, 
a mirror plane is equivalent in effect to a two-fold axis). 
A p, q, Y axis system can be defined such that Y is the 
effective two-fold axis. The observation-axis system 
s, t ,  w is given by the Euler transform D(@,O,A). The 
terms ( p r )  and (qr)  in the mean-square displacement 
tensor change sign under a two-fold rotation, and there- 
fore (w2> can only remain invariant if 0 = 0 or go”, i.e. 
for observation parallel or normal to Y. The appro- 
priate density matrices have been evaluated previou~ly.~, l2 

In the orientation with 0 = 90” (observation normal to r 
axis) the diagonal matrix elements (pst = 0) are obtained 
from equations (35)-(37) using the relations (49)-(55). 

sin% = 1 - ($ . X”)2 = K (49) 
C0S24 = [(6. g)2 - (6 . p ) 2 ] / K  (50) 

cos2e ~ 0 ~ 2 4  = [ (G . a>2 - (6 . p ) 2 1 ( 6  . X ” ) Z / ~  (51) 

case sin24 = 2(G.  2)(6 . j l )(6. X ” ) / K  (52) 
sin26 = (t” . X”)Z/K (53) 

cos26 = ( s A . x ” ) 2 / K  (54) 
sins coss = - (t . 2) (Z . (55) 

s h y  sin(a - a) (56) 

(57) 

(58) 

3 .  x” = sinp sin(cc - @) (59) 

t ” .  X” = cosp (60) 

where G . $ = cosy cosp C O S ( ~  - @) - 

A A  w . y = -siny cosp cos(a - a) - 

67 , x” = sinp cos(a - @) 

cosy sin(a - a) 

The t axis is parallel to the two-fold axis. 
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The density-matrix elements are dependent on the different orientations normal to the two-fold axis (these 
e.f.g. parameters, r ) ,  CC, p, and y ,  and on the direction of 
observation @ which is known. These equations may be 
evaluated numerically in the search for solutions to 
experimental data,5y7g9 but this approach is not entirely 
satisfactory. 

pointed out that  the intensity tensor 
elements Ipr and I,, also change sign under the action of a 
two-fold rotation so that I M P ,  = IM,, = 0. The observ- 
able tensor thus has monoclinic symmetry, and two com- 
ponents of the local site tensor are not recorded. How- 
ever, from equation (7) the condition (61) imposes a 

Zimmermann 

constraint on the system such that defining IpT = LCOS 
a,,b and I,, = Lsin$ expresses the intensity tensor in 
terms of a single unknown parameter $ (0 < $ < x ) .  
If the values of can be determined, then the para- 
meters ?, CC, p, and y can be expressed as a function of $, 
and it only requires an independent determination of r )  

to solve the system uniquely. This procedure was 
demonstrated6 in principle for FeC1,*4H20, but is also 
subject to criticism. 

It is not always possible to measure r )  at  the same tem- 
perature as in the single-crystal measurement. Thus 
Zimmcrman quotes an r )  value at 200 K and an intensity 
tensor a t  300 K. The intensity tensor cannot be 
corrected for thickness effects directly since i t  does not 
contain any expression of the polarization correction. 
Consequent errors can only be reduced by making observ- 
ations in several very different directions which im- 
mediately restricts the method to large crystals. The six 
directions recommended by Zimmermann include two 
where the recoilless fractions are not identical at both 
sites, and his final equations are only valid for Ipq = 0 
which is not a general condition. 

A more satisfactory procedure is to use a combination 
of data obtained with both polarized and unpolarized 
sources. For example, with the direction of observation 
normal to the two-fold axis one can measure the experi- 
mental parameter I ,  with an unpolarized source and I2 
and I ,  with a polarized source. The values of I ,  and I ,  

also depend on $ and can be used to resolve the ambiguity. 
Unfortunately, a close inspection of the available data for 
the intensity tensor in FeC1,*4H20 shows that they are 
not fully self-consistent. However, they are in reason- 
able accord with the solution proposed from accurate 
polarization data by a trial-and-error a p p r ~ a c h . ~  

In  order to demonstrate the new method more clearly 
I have measured the intensity ratio of the spectrum of 
Fe[NH4],[S0,],*6H,0 for a single crystal a t  three 

measurements extend the earlier work ' 9 1 2 ) .  The 
dependence of the intensity on @ may be expressed as in 
(65). The experimental values obtained from a crystal 

cos2@ Ihpp + sin2@ Ih,, + 2 cos@ sin@ Ih,, 
P(@) = 

(65) 

containing 37.2 mg cmP2 of iron were Ih ( 1 0 8 O )  = 0.466, 
Ih (138") = 0.355, and Ih (168') = 0.390. These values 
were initially corrected to give approximate zero-thick- 
ness values using a recoilless fraction of f = 0.27. 
(Although the value off will not necessarily be the same 
in all the three orientations, the crystal is quite thick and 
saturating strongly enough to reduce the sensitivity to any 
errors in f. This point may be appreciated more easily 

6o0 7 0  60 120 180 

Y'" 
F I G U R E  1 Dependence of u, p, 7 ,  and 3 on the value of i,h from 

experimental data for Fe[NH,],[SO,],*GH,O. The calculated 
values for 11, I,, and I ,  are also shown, together with the 
experimental values for I ,  and I, which indicate two solutions a t  
4 = 57 and 72" 

by referring to Figure 4 of ref. 5.) Solution of three 
simultaneous equations gives values of Ppp, Pqq, and Ihpp, 
with IhTT then being given by the trace condition in 
equation (3). Values for a ,  p, y and r )  can then be cal- 
culated as a function of t,b, and the thickness correction 
improved by successive approximations (only 2-3 steps 
are necessary) to give a self-consistent result. 

The final values for the traceless macroscopic intensity 
tensor were IMpp  = -0.105, IM,, = 0.071, IMTT = 0.034, 
and IMPq = 0.184. The values of a ,  p, y and r )  as a func- 
tion of y5 are shown in Figure 1, together with values for 
I,, I,, and I ,  for @ = 138" and a crystalof thickness 29.5 
mg cm-2. The experimental values for I ,  and I ,  are 
indicated and result in two solutions, both with eQVzZ 
negative, in sign: (A) a = 147, p = 93, y = 160", and 
3 = 0.90, for $ = 57"; (B) a = 148, p = 89, y = 160°, 
and r )  = 0.91, for t,b = 72". These are almost identical, 
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I, [equations (63) and (64)]. The result is a unique 
solution with eQVzz positive in sign, r )  = 0.10 0.05: 
and < = & (40 & 2") as shown in Figure 2. The boxes 
indicate the experimental results I, == 0.927(11), In = 
1.444(43), and I, = 0.571(13). 

The den- 
sity matrices for four triclinic sites in orthorhombic 
symmetry may be obtained by combining the density 
matrices for monoclinic symmetry (49)-(55) with 
observation directions of &a. However, the resulting 
equations depend on a, p, y ,  arid 3 .  No less than three 
values of the intensity tensor are unspecified (I,,, Ip, 
and I p r ) ,  and even if r )  is available by independent 
measurement i t  will be difficult to determine a, p, and y. 

(3) Triclinic sites in orthorhombic symmetry. 

However, i t  can be shown that an additional polarized- 
source experiment for CI, = 168" would give a unique 
solution and thus specify the intensity tensor at each site. 
However, the same experiment for @ = 108" does not 
give such a clear distinction. It is thus possible to 
' design ' additional experiments once the general experi- 
mental situation has been defined, The above results can 
be compared to the previous trial-and-error estimates 
(converted to have a negative sign for eQVZ2) of a = 140, 
p = 90, y = 155", and 3 = 1.0. The agreement is 
satisfactory. The calculated values Ih (108, 138, 168) = 
0.467, 0.352, and 0.386 for $ = 57" and I" (108, 138, 168) 
= 0.467, 0.354, and 0.390 for i,l~ = 72" are in excellent 
agreement with experiment, and differ considerably from 
the zero-thickness values of Ih (108, 138, 168) = 0.446, 
0.291, and 0.328. 

However, there remains a fundamental ambiguity in 
that this solution only applies to one of the two sites; the 
rotation of x about the Y axis results in the alternative 
solution x + a,p,y but the correct assignment to a given 
site can only be inferred. 

If the 
space group is orthorhombic, but the local site symmetry 
is only monoclinic, then two sites have to be con- 
sidered. A typical example is Na2[Fe(CN),(NO)]-2Hn0 
with space group Pnn,n(Dif). The $,q,r axis system is 
related to the crystallographic axes such that one of the 
major axes of the e.f.g. must lie along Y and the two sites 
are effectively related in orientation by two-fold rotations 
about 9 and q. The intensity tensor has four values, 
Ipp, I,,, I,,, and Ipq of which only I,, changes sign under 
two-fold rotation. Thus I M P ,  = 0 and the macroscopic 
intensity tensor only defines three of the four values, but 
from equation (7) one finds (66). If all the four tensor 

(2) Monoclinic sites in orthorhombic symmetry. 

Ip*2 = -& (1 - P a )  (66) 
components are known, then the value of the angle C ,  
which specifies the rotation about Y into the principal- 
axis system, is given by < = & arctan [&21p,/(Iy1p - Iq,)], 
but the ambiguity in the sign of Ip, in equation (66) 
results in a choice of sign for a and thus in the assignment 
of axes to the two sites. 

Once again the recoilless fraction is the same for both 
sites if the direction of observation is parallel or normal to 
one of the effective two-fold axes. The determination of 
the macroscopic intensity tensor requires measurements 
in a t  least two directions with a full thickness correction, 
and this procedure has already been described.l6 A 
more useful alternative is to  use polarized radiation along 
only one direction of observation normal to a two-fold 
axis.* In general, tlie density matrices can be derived 
from the equations for monoclinic symmetry (49)-(55) 
with the appropriate restrictions on a, p, and y .  The 
area ratio for an unpolarized source is given by equation 
(62) and is a function of < and r )  only. The value of I, in 
Na,[Fe(CN),(NO)]-2H20 is 0.927, which can be corrected 
by successive approximations to a thickness-corrected 
value of 0.906. Algebraic expression of < as a function 
of r )  is followed by calculating the polarized values I ,  and 

I I L -2 

0.5 0 0.5 1 

7 

0.4;  

FIGURE 2 Results of polarized measurements on Na,[Fc.(CN),- 
(NO)].2H,O with the observation axis at 37.5" t o  the b axis in 
the bc plane: (a) y axis, (b )  x axis in c. Using the observed 
value of I,, the algebraic expression of 5 as a function of 3 leads 
to  the value 6 = & (40 f 2"). The values for I ,  and I 3  can 
then be used t o  obtain a unique solution with eQ V Z L  positive in 
sign and q = 0.10 & 0.05 

(4) Orthorhombic sites in axial symmetry. When there 
are two orthorhombic sites in tetragonal symmetry the 
x,y,z axes arc parallel to the crystallographic axes but in 
an unknown order. The recoilless fraction is invariant 
only along the four-fold ( r )  axis, or for @ = 45", i.e. in the 
(1 10) planes. The traceless macroscopic intensity 
tensor with Pt,  = I,, and I M P ,  = I h f p p  = --JIrr only 
specifies I,, directly, but I , ,  and I,, are implied via 
equations (3) and (7) so that we obtain (67) and (68). 

( I p p  - I q q ) 2  = i3g [l - 16(IM,r)2] (67) 

The magnitude and sign of the. principal value and the 
value of r )  can now be determined, but net the relative 
order of the axes $J and q. There is therefore a funda- 
mental ambiguity in the assignment of tlie fi and q axes 
to the two equivalent sites. 

The density matrices are independent of <B but depend 
on which axis lies along the four-fold axis and on 0. 

16 R. W. Grant, R. M. Ilousley, snd TJ. Gmser, Phys. Rev. ,  
1969, 178, 523. 
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With the t axis normal to the four-fold axis the matrices 
are given by (69)-(71) where x = w, - $ w ( l  + Y)), 

Pss = 8 * 4 %  (69) 

ptt  = 4 & z (3COS2 O - 2)  (70) 

(71) p = (pss -/- pti) == $ & $X(3COS2 O - 1) 

or -&(l - Y)) for z ,  y,  or x axis along the four- 
fold axis. The values of I,, I,, and I3  [equations (62)- 
(64)] for zero thickness are plotted as a function of Y) in 
Figure 3 for 0 = 90" (which is the most suitable choice of 
direction) and eQV',, defined as positive. Although the 
value of I ,  in isolation gives an unambiguous result, the 
polarized ratios I ,  and I3 are much more sensitive, and 

L I I I 1 I 

0 0.5 1 0.5 0 0.5 1 
7 

FIGURE 3 The area ratios I,, I,, and I, as a function of q for two 
orthorhombic sites in tetragonal symmetry calculated for zero 
thickness, 0 = go", and eQV,, defined as positive: (a) z ,  ( b )  y,  
and (c) x in four-fold axis. Note that  the polarized ratios I ,  
and I ,  are much more sensitive than the unpolarized value I ,  
t o  the value of q. 

in particular one component in the I ,  ratio is very small 
for z along the four-fold axis. A careful thickness 
correction for one set of data in an appropriate direction 
can specify the e.f.g. tensor. 

The same density-matrix equations apply in principle 
for three orthorhombic sites in hexagonal symmetry, 
except that the recoille.ss fraction is only strictly in- 
variant along the six-fold axis, which will probably not 
be favoured experimentally. However, by assuming f to 
be isotropic a reasonable determination can be made 
except that the error in the value of Y) may be larger. 

The case of 
two or four monoclinic sites in tetragonal(4/m or 4/mmm) 
symmetry with one axis of the e.f.g. tensor parallel to 
the four-fold axis is closely analogous to the orthorhombic 
case in that when f is isotropic the equations are identical 
and are independent of the rotation of axes in the plane 
normal to the four-fold axis. The equivalent plane to 
(110) in which f is invariant still exists, but its orient- 
ation is unknown, although the condition still holds 

(5) Monoclinic sites in axial symmetry. 

along the four-fold axis. However, most of the inform- 
ation can be obtained with resonable accuracy except 
for the rotation angle. The same argument applies to 
three or six monoclinic sites in hexagonal (6/m or 6/mmm) 
symmetry with one axis of the e.f.g. tensor parallel to 
the six-fold axis. 

If there are four monoclinic sites in tetragonal(4/mmm), 
three in trigonal (3/m), or six in hexagonal (6/mmm) 
symmetry with the unique axis normal to the major 
orientation axis then the density matrix is more complex. 
For example, for observation along the n-fold axis (with 
f isotropic) we have (72) for the x axis in the plane normal 

p == pss = ptt = 9 $0 (1 - Y) C O S ~ ~ )  (72) 
to the ut-fold axis and an angle y between they axis and 
this plane, (73) for the x axis in the plane and an angle p 

p = pss = ptr = 8 & $0 (2 - 3sin2p - ?sin2p) 

p = pss = pi t  = 4 & QW (2 - %in2@ + qsin2p) 

(73) 

(74) 
between the 12-fold axis and x, and (74) for they  axis in 
the plane. The density matrix is thus a function of two 
parameters which cannot be separated. 

(6) Triclinic sites in axial symmetry. When the point 
symmetry is triclinic but the space group is tetragonal, 
trigonal, or hexagonal the recoilless fraction is only in- 
variant along the n-fold axis. The density matrix is 
then given by (75) which is independent of a, but a 

P = Pss = Ptt = 
4 & QO (2 - 3sin2p + qsin2p cos2y) (75) 

complex function of p, y, and Y). Even under the assump- 
tion that f is isotropic, the equations for the angular 
dependence are too complex for practical application. 

When the site symmetry 
is lower than cubic but the space group is cubic the 
macroscopic intensity tensor is always diagonal (P,, == 

I M , ,  = IMTT = 8)  and the spectrum is a symmetrical 
doublet in all orientations. Thus no information regard- 
in the e.f.g. tensor can be obtained. 

However, this result is, only strictly true when the 
recoilless fraction is isotropic. This can be illustrated 
by considering three equivalent tetragonal-site orient- 
ations in cubic (m3m) symmetry, the four-fold axes 
being orthogonal. From equations (12) and (13) f will 
usually be angular dependent with a mean-square dis- 
placement given by (76). All the three sites contribute 

(7) Sites in cubic symmetry. 

(w2) = sin% ( x 2 )  + cos20 ( x 2 )  (76) 

equally only along the ( 11 1) directions for which cos20 = 
1/3. However, along the (100) directions, for example, 
the density matrix has the effective average value of (77) 

where and fi are the recoilless fractions parallel and 
normal to the four-fold axis and the average recoilless 
fraction is f = + 2fJ. The observed spectrum 
may therefore have a slight asymmetry. In principle, 
if the sign of eQV/',, is known this asymmetry will indicate 

http://dx.doi.org/10.1039/DT9780000743


752 J.C.S. Dalton 
whether >fL; conversely, if the mean-square dis- 
placement tensor from X-ray data is clearly anisotropic it 
can be used to obtain the sign of eQV,,. 

When there are four equivalent trigonal sites a similar 
argument applies except that f is invariant and the 
spectrum is symmetrical along the (100) directions with 
(78) along the (111) directions. 

For site symmetries lower than axial, similar relations 
can be derived, but in view of the large number of 
parameters they serve no useful purpose. 

Overla$$ing Lines.-If the quadrupole splitting is small 
the two components of the resonance overlap and equa- 
tions (30) and (32)-(34) are no longer strictly valid, 
We must revert to equation (26) because the k terms in 
the exponential cannot be separated. Evaluation of this 
expression involves a separate ' transmission integral ' 
of the overlapping lines for each of the two basis polariz- 
ations, and is therefore more complicated than the equiv- 
alent powder calculation. However, the necessary 
numerical techniques are well established.17, l8 

In principle, this can be extended to the simultaneous 
curve fitting of several spectra in different orientations 
with the primary parameters as variables, and some work 
has been successfully carried out to this effect. However, 
it has been found that for quadrupole splittings of A 
$I' the area ratios obtained from curve-fitting simple 
overlapping Lorentzian profiles are sufficiently accurate 
for a study of the e.f.g. tensor. Therefore most materials 
of interest can be studied without this type of complic- 
ation. 

In compounds having more than one crystallo- 
graphically distinct site the general principles described 
in this paper can be used without modification &rovided 
that the two or more components do not overlap sig- 
nificantly. Each component site can be treated in- 
dependently. However, in Fe[S0,]*7H20 for example 
there are two crystallographic sites of triclinic symmetry 
in the monoclinic unit cell which fortuitously give an 
almost identical Mossbauer spectrum, and therefore show 
only a simple doublet. The thickness correction of 
single-crystal spectra now requires a knowledge of two 
independent mean-square displacement tensors. The 
two e.f .g. tensors are specified by no less than 10 unknown 

l7 G. K. Shenoy and J. M. Friedt, Nuclear Instr .  Methods, 

N. Bertazzi, 1'. C. Gibb, and N. N. Greenwood, J.C.S.  
1974, 116, 573. 

Dalton, 1976, 1163. 

parameters. The published single-crystal study using 
the Zory method is grossly inadequate,3 but it may prove 
extremely difficult to accurately determine the orient- 
ations of the two tensors. In compounds with two sites 
and partial overlap of one of the components the 
transmission-integral method can probably be applied 
successfully. 

Conclusions.-The original method of Zory as extended 
by Zimmermann refers specifically to sites of triclinic 
symmetry in crystals having a monoclinic space group. 
An unambiguous solution for the e.f.g. tensor can only 
be obtained if crystal plates can be grown in several 
orientations, and if -q can be obtained by an independent 
measurement. Both conditions are severely restrictive 
since large crystals are not easily obtained, and it is not 
always feasible to determine q at  the same temperature. 
Furthermore, the recoilless fraction is assumed to be iso- 
tropic, and thickness effects are ignored. 

In this paper it has been shown that the problem of 
determining the orientation of the e.f.g. tensor can be 
expressed generally in terms of the point symmetries of 
the resonant site and space group. In nearly all in- 
stances where the space group has a symmetry lower than 
cubic it is possible to determine the relevant parameters 
from one crystal by using a combination of polarized and 
unpolarized radiation. In cases where there are n non- 
equivalent site orientations the primary ambiguity re- 
maining is of assignment of the n different solutions. 

This represents a major step forward in that many 
more substances can now be studied than hitherto. For 
example, the recent work on deoxygenated myglobin 1932Q 

using the Zory-Zimmermann methods resulted in a 
family of possible solutions, whereas the techniques 
presented here would have been able to give a full 
determination. It therefore seems likely that major 
progress can now be made in studying iron-bearing 
proteins and model compounds. Where an X-ray 
structure is known, the e.f.g. can be related to the 
chemical bonding at  the iron site. Where only the space 
group is known, but the site symmetry is indicated by the 
stoicheiometry, the orientation of the e.f.g. may be of 
valuable assistance in elucidation of the structure near 
the active centre of the molecule. 

[7/1491 Received, 17th August ,  19771 

l9 U. Gonser, Y. Maeda, A. Trautwein, F. Parak, and H. For- 

Zo Y .  Maeda, T. Harami, A. Trautwein, and U. Gonser, 2. 
manek, 2. Natwrforsch., 1974, B29, 241. 

Naturforsch., 1976, B31, 487. 

http://dx.doi.org/10.1039/DT9780000743

